3 years ago

Optical wireless link between a nanoscale antenna and a transducing rectenna.

Mickaël Buret, Nicolas Cazier, Alexandre Bouhelier, Gérard Colas-des-Francs, Marie-Maxime Mennemanteuil, Arindam Dasgupta

Initiated as a cable-replacement solution, short-range wireless power transfer has rapidly become ubiquitous in the development of modern high-data throughput networking in centimeter to meter accessibility range. Wireless technology is now penetrating a higher level of system integration for chip-to-chip and on-chip radiofrequency interconnects. However, standard CMOS integrated millimeter-wave antennas have typical size commensurable with the operating wavelength, and are thus an unrealistic solution for downsizing transmitters and receivers to the micrometer and nanometer scale. In this letter, we demonstrate a light-in and electrical-signal-out, on-chip wireless near infrared link between a 200 nm optical antenna and a sub-nanometer rectifying antenna converting the transmitted optical energy into direct current (d.c.). The co-integration of subwavelength optical functional devices with an electronic transduction offers a disruptive solution to interface photons and electrons at the nanoscale for on-chip wireless optical interconnects.

Publisher URL: http://arxiv.org/abs/1711.01778

DOI: arXiv:1711.01778v1

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.