3 years ago

3D Common-Refinement Method for Non-Matching Meshes in Partitioned Variational Fluid-Structure Analysis.

Yun Zhi Law, Vaibhav Joshi, Rajeev Kumar Jaiman, Yulong Li

We present a three-dimensional (3D) common-refinement method for non-matching meshes between discrete non-overlapping subdomains of incompressible fluid and nonlinear hyperelastic structure. To begin, we first investigate the accuracy of common-refinement method (CRM) to satisfy traction equilibrium condition along the fluid-elastic interface with non-matching meshes. We systematically assess the accuracy of CRM against the matching grid solution by varying grid mismatch between the fluid and solid meshes over a cylindrical tubular elastic body. We demonstrate second-order accuracy of CRM through uniform refinements of fluid and solid meshes along the interface. We then extend the error analysis to transient data transfer across non-matching meshes between fluid and solid solvers. We show that the common-refinement discretization across non-matching fluid-structure grids yields accurate transfer of the physical quantities across the fluid-solid interface. We next solve a 3D benchmark problem of a cantilevered hyperelastic plate behind a circular bluff body and verify the accuracy of coupled solutions with respect to the available solution in the literature. By varying the solid interface resolution, we generate various non-matching grid ratios and quantify the accuracy of CRM for the nonlinear structure interacting with a laminar flow. We illustrate that the CRM with the partitioned NIFC treatment is stable for low solid-to-fluid density ratio and non-matching meshes. Finally, we demonstrate the 3D parallel implementation of common-refinement with NIFC scheme for a realistic engineering problem of drilling riser undergoing complex vortex-induced vibration with strong added mass effects.

Publisher URL: http://arxiv.org/abs/1711.01773

DOI: arXiv:1711.01773v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.