3 years ago

Impact of domain anisotropy on the inverse cascade in geostrophic turbulent convection.

Meredith Plumley, Keith Julien, Edgar Knobloch

The effect of domain anisotropy on the inverse cascade occurring within the geostrophic turbulence regime of rapidly rotating Rayleigh-B\'enard convection (RRBC) is investigated. In periodic domains with square cross-section in the horizontal a domain-filling dipole state is present. For rectangular periodic domains a Kolmogorov-like flow consisting of a periodic array of alternating unidirectional jets with embedded vortices is observed, together with an underlying weak meandering transverse jet. Similar transitions occurring in weakly dissipative two-dimensional flows driven by externally imposed small amplitude noise as well as in classical hydrostatic geostrophic turbulence are a consequence of inviscid conservation of energy and potential enstrophy and can be understood using statistical mechanics considerations. RRBC represents an important three-dimensional system with only one inviscid invariant that nonetheless exhibits large-scale structures driven by intrinsically generated fluctuations.

Publisher URL: http://arxiv.org/abs/1711.01685

DOI: arXiv:1711.01685v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.