4 years ago

An ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K.

J. Ye, J. L. Hall, L. Sonderhouse, D. G. Matei, E. Oelker, T. Legero, F. Riehle, U. Sterr, C. Benko, J. M. Robinson, W. Zhang

We report on a laser locked to a silicon cavity operating continuously at 4 K with $1 \times 10^{-16}$ instability and a median linewidth of 17 mHz at 1542 nm. This is a ten-fold improvement in short-term instability, and a $10^4$ improvement in linewidth, over previous sub-10 K systems. Operating at low temperatures reduces the thermal noise floor, and thus is advantageous toward reaching an instability of $10^{-18}$, a long-sought goal of the optical clock community. The performance of this system demonstrates the technical readiness for the development of the next generation of ultrastable lasers that operate with ultranarrow linewidth and long-term stability without user intervention.

Publisher URL: http://arxiv.org/abs/1708.05161

DOI: arXiv:1708.05161v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.