3 years ago

Reconstructing Video from Interferometric Measurements of Time-Varying Sources.

William T. Freeman, Andrew A. Chael, Sheperd S. Doeleman, Freek Roelofs, Michael D. Johnson, Katherine L. Bouman, Adrian V. Dalca

Very long baseline interferometry (VLBI) makes it possible to recover images of astronomical sources with extremely high angular resolution. Most recently, the Event Horizon Telescope (EHT) has extended VLBI to short mm wavelengths with a goal of achieving angular resolution sufficient for imaging the event horizons of supermassive black holes. VLBI provides measurements related to the underlying source image through a sparse set spatial frequencies. An image can then be recovered from these measurements by making assumptions about the underlying image. One of the most important assumptions made by conventional imaging methods is that over the course of a night's observation the image is static. However, for quickly evolving sources, such as the galactic center's supermassive black hole (SgrA*) targeted by the EHT, this assumption is violated and these conventional imaging approaches fail. In this work we propose a new way to model VLBI measurements that allows us to recover both the appearance and dynamics of an evolving source by reconstructing a video rather than a static image. By modeling VLBI measurements using a Gaussian Markov Model, we are able to propagate information across observations in time to reconstruct a video, while simultaneously learning about the dynamics of the source's emission region. We demonstrate our proposed Expectation-Maximization (EM) algorithm, StarWarps, on realistic, synthetic observations of black holes, and show how it substantially improves results compared to conventional imaging algorithms.

Publisher URL: http://arxiv.org/abs/1711.01357

DOI: arXiv:1711.01357v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.