3 years ago

Largely tunable band structures of few-layer InSe by uniaxial strain.

Zhengzong Sun, Chong Wang, Fengren Fan, Chaoyu Song, Shenyang Huang, Hugen Yan, Guowei Zhang, Ningning Xuan, Hua Wu

Due to the strong quantum confinement effect, few-layer {\gamma}-InSe exhibits a layer-dependent bandgap, spanning the visible and near infrared regions, and thus recently draws tremendous attention. As a two-dimensional material, the mechanical flexibility provides an additional tuning knob for the electronic structure. Here, for the first time, we engineer the band structures of few-layer and bulk-like InSe by uniaxial tensile strain, and observe salient shift of photoluminescence (PL) peaks. The shift rate of the optical gap is approximately 90-100 meV per 1% strain for 4- to 8-layer samples, which is much larger than that for the widely studied MoS2 monolayer. Density functional calculations well reproduce the observed layer-dependent bandgaps and the strain effect, and reveal that the shift rate decreases with increasing layer number for few-layer InSe. Our study demonstrates that InSe is a very versatile 2D electronic and optoelectronic material, which is suitable for tunable light emitters, photo-detectors and other optoelectronic devices.

Publisher URL: http://arxiv.org/abs/1711.01715

DOI: arXiv:1711.01715v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.