3 years ago

Selective inhibition of M5 muscarinic acetylcholine receptors attenuates cocaine self-administration in rats

Selective inhibition of M5 muscarinic acetylcholine receptors attenuates cocaine self-administration in rats
Barak W. Gunter, Craig W. Lindsley, Robert W. Gould, Carrie K. Jones, Michael Bubser, Kevin M. McGowan
Cocaine use disorder (CUD) remains a debilitating health problem in the United States for which there are no Food and Drug Administration-approved treatment options. Accumulating anatomical and electrophysiological evidence indicates that the muscarinic acetylcholine receptor (mAChR) subtype 5 (M5) plays a critical role in the regulation of the mesolimbic dopaminergic reward circuitry, a major site of action for cocaine and other psychostimulants. In addition, M5 knockout mice exhibit reduced cocaine self-administration behaviors with no differences in sugar pellet-maintained responding relative to wild-type mice. These findings suggest that selective inhibition of M5 mAChR may provide a novel pharmacological approach for targeting CUD. Recently, we reported the synthesis and characterization of ML375, a selective negative allosteric modulator (NAM) for the rat and human M5 mAChR with optimized pharmacokinetic properties for systemic dosing in rodents. In the present study, male Sprague–Dawley rats were trained to self-administer intravenous cocaine (0.1–0.75 mg/kg/infusion) under a 10-response fixed ratio or a progressive ratio schedule of reinforcement. Under both schedules of reinforcement, ML375 produced dose-related reductions in cocaine self-administration. ML375 also modestly reduced sugar pellet-maintained responding on the 10-response, fixed ratio schedule but had no effect under a progressive ratio schedule of reinforcement. Further, ML375 did not affect general motor output as assessed by a rotarod test. Collectively, these results provide the first demonstration that selective inhibition of M5 using the M5 NAM ML375 can attenuate both the reinforcing effects and the relative strength of cocaine and suggest that M5 NAMs may represent a promising, novel treatment approach for CUD. The first in class, selective muscarinic receptor subtype 5 (M5) negative allosteric modulator, ML375 reduces the reinforcing efficacy of cocaine in rats, without affecting sucrose pellet-maintained responding. Furthermore, ML375 has no effect on rotarod performance. This study shows for the first time that selective modulation of M5 may be a novel therapeutic strategy for the treatment of cocaine use disorder.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/adb.12567

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.