3 years ago

Levodopa prevents the reinstatement of cocaine self-administration in rats via potentiation of dopamine release in the medial prefrontal cortex

Levodopa prevents the reinstatement of cocaine self-administration in rats via potentiation of dopamine release in the medial prefrontal cortex
Gian Luigi Gessa, Walter Fratta, Paola Devoto, Liana Fattore, Pierluigi Saba, Silvia Antinori
Dopamine agonists have been proposed as therapeutic tools for cocaine addiction. We have recently demonstrated that indirect dopamine agonists, including levodopa (L-DOPA), markedly increase cocaine-induced dopamine release in the medial prefrontal cortex (mPFC) of rats leading to the suppression of cocaine-seeking behavior. This study was aimed to understand the behavioral and neurochemical effects of L-DOPA on cocaine-taking and cocaine-seeking in rats. After reaching a stable pattern of intravenous cocaine self-administration under a continuous fixed ratio (FR-1) schedule of reinforcement, male rats were treated with L-DOPA at different steps of the self-administration protocol. We found that L-DOPA reduced cocaine self-administration under FR-1 schedule of reinforcement and decreased the breaking points and the amount of cocaine self-administered under the progressive ratio schedule of reinforcement. Levodopa also decreased cocaine-seeking behavior both in a saline substitution test and in the cue priming-induced reinstatement test, without affecting general motor activity. Importantly, L-DOPA greatly potentiated cocaine-induced dopamine release in the mPFC of self-administering rats while reducing their cocaine intake. In the same brain area, L-DOPA also increased dopamine levels during cue priming-induced reinstatement of cocaine-seeking behavior. The potentiating effect was also evident in the mPFC but not nucleus accumbens core of drug-naïve rats passively administered with cocaine. Altogether, these findings demonstrate that L-DOPA efficaciously reduces the reinforcing and motivational effects of cocaine likely potentiating dopamine transmission in the mPFC. Its ability to prevent cue priming-induced reinstatement of cocaine-seeking suggests that it might be effective in reducing the risk to relapse to cocaine in abstinent patients. Systemic administration of levodopa (L-DOPA) potentiates cocaine-induced dopamine (DA) release in the rat medial prefrontal cortex (mPFC) during cocaine self-administration and contextually reduces cocaine-taking behavior. In the same brain area, after extinction of self-administration, L-DOPA administration increases DA levels and inhibits cocaine-seeking behavior during cue priming-induced reinstatement. Its ability to prevent cue priming-induced reinstatement of cocaine-seeking suggests that it might be effective in reducing the risk to relapse to cocaine in abstinent patients.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/adb.12509

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.