3 years ago

Effects of ethanol extract of Bombax ceiba leaves and its main constituent mangiferin on diabetic nephropathy in mice

The present study was designed to explore the mechanism by which ethanol extract of Bombax ceiba leaves (BCE) and its main constituent mangiferin (MGF) affect diabetic nephropathy by combating oxidative stress. Oral administration of BCE and MGF to normal and streptozotocin (STZ)-induced diabetic mice were carried out. Fasting blood glucose, 24-h urinary albumin, serum creatinine, and blood urea nitrogen were tested, histopathology, and immunohistochemical analysis of kidney tissues were performed. Moreover, mesangial cells were treated with BCE and MGF for 48 h with or without 25 mmol·L−1 of glucose. Immunofluorescence, Western blot and apoptosis analyses were used to investigate their regulation of oxidative stress and mitochondrial function. BCE and MGF ameliorated biochemical parameters and restored STZ-induced renal injury in the model mice. In vitro study showed that high glucose stimulation increased oxidative stress and cell apoptosis in mesangial cells. BCE and MGF limited mitochondrial membrane potential (Δψm) collapse by inhibiting Nox4, mitochondrially bound hexokinase II dissociation, and subsequent ROS production, which effectively reduced oxidative stress, cleaved caspase-3 expression and cell apoptosis. Our work indicated that BCE and MGF had protective effects on diabetic caused kidney injury and prevented oxidative stress in mesangial cells by regulation of hexokinase II binding and Nox4 oxidase signaling.

Publisher URL: www.sciencedirect.com/science

DOI: S1875536417300870

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.