5 years ago

Multilayer Two-Dimensional Water Structure Confined in MoS2

Multilayer Two-Dimensional Water Structure Confined in MoS2
Hyung Gyu Park, Kijeong Kwac, Tod A. Pascal, In Kim, Yousung Jung, William A. Goddard
The conflicting interpretations (square vs rhomboidal) of the recent experimental visualization of the two-dimensional (2D) water confined in between two graphene sheets by transmission electron microscopy measurements, make it important to clarify how the structure of two-dimensional water depends on the constraining medium. Toward this end, we report here molecular dynamics (MD) simulations to characterize the structure of water confined in between two MoS2 sheets. Unlike graphene, water spontaneously fills the region sandwiched by two MoS2 sheets in ambient conditions to form planar multilayered water structures with up to four layer. These 2D water molecules form a specific pattern in which the square ring structure is formed by four diamonds via H-bonds, while each diamond shares a corner in a perpendicular manner, yielding an intriguing isogonal tiling structure. Comparison of the water structure confined in graphene (flat uncharged surface) vs MoS2 (ratchet-profiled charged surface) demonstrates that the polarity (charges) of the surface can tailor the density of confined water, which in turn can directly determine the planar ordering of the multilayered water molecules in graphene or MoS2. On the other hand, the intrinsic surface profile (flat vs ratchet-profiled) plays a minor role in determining the 2D water configuration.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b05153

DOI: 10.1021/acs.jpcc.7b05153

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.