3 years ago

Effects of Embedded Dipole Layers on Electrostatic Properties of Alkanethiolate Self-Assembled Monolayers

Effects of Embedded Dipole Layers on Electrostatic Properties of Alkanethiolate Self-Assembled Monolayers
Egbert Zojer, Jean-François Morin, Iris Hehn, Orlando M. Cabarcos, David L. Allara, Paul S. Weiss, Peng Peng Zhang, Michael Zharnikov, Masato M. Maitani, Jean-Benoit Giguère, Nichole Sullivan, Swen Schuster
Alkanethiolates (ATs) forming self-assembled monolayers (SAMs) on coinage metal and semiconductor substrates have been used successfully for decades for tailoring the properties of these surfaces. Here, we provide a detailed analysis of a highly promising class of AT-based systems, which are modified by one or more dipolar carboxylic acid ester groups embedded into the alkyl backbone. To obtain comprehensive insight, we study nine different embedded-dipole monolayers and five reference nonsubstituted SAMs. We systematically varied lengths of the alkyl segments, ester group orientations, and number of ester groups contained in the chain. To understand the structural and electronic properties of the SAMs, we employ a variety of complementary experimental techniques, namely, infrared reflection absorption spectroscopy (IRS), high-resolution X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), atomic force microscopy (AFM), and Kelvin probe (KP) AFM. These experiments are complemented with state-of-the-art electronic band-structure calculations. We find intriguing electronic properties such as large and variable SAM-induced work function modifications and dipole-induced shifts of the electrostatic potential within the layers. These observations are analyzed in detail by joining the results of the different experimental techniques with the atomistic insight provided by the quantum-mechanical simulations.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b04694

DOI: 10.1021/acs.jpcc.7b04694

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.