3 years ago

Electrophysiological effects of desflurane in children with Wolff-Parkinson-White syndrome: a randomized crossover study

T. Suzuki, Y. Oda, M. Shimada, Y. Yoshida, K. Nishikawa, H. Hino
Background We hypothesized that, compared with propofol, desflurane prolongs the antegrade accessory pathway effective refractory period (APERP) in children undergoing radiofrequency catheter ablation for Wolff-Parkinson-White (WPW) syndrome. Methods In this randomized crossover study, children aged 4.1−16.1 years undergoing radiofrequency catheter ablation for WPW syndrome were randomly divided into four groups according to the concentration of desflurane and anesthetics used in the first and the second electrophysiological studies (EPS). After induction of general anesthesia with propofol and tracheal intubation, they received one of the following regimens: 0.5 minimum alveolar concentration (MAC) desflurane (first EPS) and propofol (second EPS) (Des0.5-Prop group, n = 8); propofol (first EPS) and 0.5 MAC desflurane (second EPS) (Prop-Des0.5 group, n = 9); 1 MAC desflurane (first EPS) and propofol (second EPS) (Des1.0-Prop group, n = 10); propofol (first EPS) and 1 MAC desflurane (second EPS) (Prop-Des1.0 group, n = 9). Radiofrequency catheter ablation was performed upon completion of EPS. Sample size was determined to detect a difference in the APERP. Results Desflurane at 1.0 MAC significantly prolonged the APERP compared with propofol, but did not affect the sinoatrial conduction time, atrio-His interval or atrioventricular node effective refractory period. Supraventricular tachycardia was induced in all children receiving propofol, but not induced in 1 and 4 children receiving 0.5 MAC and 1.0 MAC desflurane, respectively. Conclusion Desflurane enhances the refractoriness and may block the electrical conduction of the atrioventricular accessory pathway, and is therefore not suitable for use in children undergoing radiofrequency catheter ablation for WPW syndrome.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/aas.13023

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.