3 years ago

The Atomic-Level Structure of Cementitious Calcium Silicate Hydrate

The Atomic-Level Structure of Cementitious Calcium Silicate Hydrate
Abhishek Kumar, Karen Scrivener, Paul Bowen, Lyndon Emsley, Albert Hofstetter, Brennan J. Walder, Aslam Kunhi Mohamed, Aaron J. Rossini, Bhuvanesh Srinivasan
Efforts to tune the bulk physical properties of concrete are hindered by a lack of knowledge related to the atomic-level structure and growth of calcium silicate hydrate phases, which form about 50–60% by volume of cement paste. Here we describe the first synthesis of compositionally uniform calcium silicate hydrate phases with Ca:Si ratios tunable between 1.0 and 2.0. The calcium silicate hydrate synthesized here does not contain a secondary Ca(OH)2 phase, even in samples with Ca:Si ratios above 1.6, which is unprecedented for synthetic calcium silicate hydrate systems. We then solve the atomic-level three-dimensional structure of these materials using dynamic nuclear polarization enhanced 1H and 29Si nuclear magnetic resonance experiments in combination with atomistic simulations and density functional theory chemical shift calculations. We discover that bridging interlayer calcium ions are the defining structural characteristic of single-phase cementitious calcium silicate hydrate, inducing the strong hydrogen bonding that is responsible for stabilizing the structure at high Ca:Si ratios.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b02439

DOI: 10.1021/acs.jpcc.7b02439

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.