3 years ago

Imaging the Pore Structure of Geological Materials with Bifunctional Nanoparticles

Imaging the Pore Structure of Geological Materials with Bifunctional Nanoparticles
Na Li, Wenling Chen, Meiyan Fu, Chong-ying Li, Feng Yi, Jia-liang Liu, Jun Zheng, Peng Liao, Lin Du
Analysis of complex pore structure of geomaterials is a fundamental issue in geoscience. Here bifunctional nanoparticles with magnetic and fluorescent properties are introduced as novel markers for optical imaging of pore structure in geomaterials. Using the paramagnetic property, powder of the nanoparticle is driven into pores under an external magnetic field, avoiding a tedious sample preparation and eliminating artificial damage of sample preparation in conventional methods. Meanwhile, the fluorescent nanoparticle marker offers a sharp contrast imaging between the rock matrix (black) and pores (bright) under microscopy. Furthermore, fluorescent nanoparticles with different sizes and colors are designed to demonstrate the potential of the method for describing pore throat sizes. Combining the merits of the paramagnetic and fluorescent properties of nanoparticles, a convenient and practical sample preparation is proposed to promote optical imaging analysis of the pore structure in geomaterials.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b03794

DOI: 10.1021/acs.analchem.7b03794

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.