3 years ago

ROS-AKT-mTOR axis mediates autophagy of human umbilical vein endothelial cells induced by cooking oil fumes-derived fine particulate matters in vitro

ROS-AKT-mTOR axis mediates autophagy of human umbilical vein endothelial cells induced by cooking oil fumes-derived fine particulate matters in vitro
Cooking oil fumes-derived PM2.5 (COFs-derived PM2.5) exposure can induce oxidative stress and cytotoxic effects. Here we investigated the role of ROS-AKT-mTOR axis in COFs-derived PM2.5-induced autophagy in human umbilical vein endothelial cells (HUVECs). HUVECs were treated with different concentrations of COFs-derived PM2.5, together with or without N-acetyl-L-cysteine (NAC, a radical scavenger) or 3-methyladenine (3-MA, an autophagy inhibitor). Cell viability was assessed with MTT assay, and ROS level was measured with DCFH-DA assay after the treatment. Transmission electron microscopy (TEM) was used to evaluate the formation of autophagosomes, while immunofluorescent assay and western blot were used to assess the expression of LC3-I/II and beclin 1. Proteins involved in the PI3K-AKT-mTOR signaling pathway were measured with western blot. The results showed that the treatment of COFs-derived PM2.5 dose-dependently reduced the viability of HUVECs and increased the ROS levels in the cells. Both immunofluorescent assay and western blot showed that treatment with COFs-derived PM2.5 significantly increased LC3-II and beclin 1 levels, as well as the ratio of LC3-II/LC3-I, which could be rescued by the co-incubation with NAC or 3-MA. TEM also confirmed the increased formation of autophagosomes in the cells treated with COFs-derived PM2.5, while co-treatment with NAC evidently decreased autophagosomes formation. In addition, western blot also showed that the phosphorylation of PI3K, AKT, and mTOR all decreased by the treatment of COFs-derived PM2.5, which was effectively rescued by the co-treatment with NAC. These findings demonstrate ROS-AKT-mTOR axis plays a critical role in HUVECs autophagy induced by COFs-derived PM2.5.

Publisher URL: www.sciencedirect.com/science

DOI: S0891584917311693

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.