3 years ago

TiO2-Based Nanomaterials for the Production of Hydrogen and the Development of Lithium-Ion Batteries

TiO2-Based Nanomaterials for the Production of Hydrogen and the Development of Lithium-Ion Batteries
Carmen Morant, Valeria Nicolosi, Abniel Machín, Juan C. Arango, Francisco Márquez -Linares, Sergio Pinilla, Sang-Hoon Park
The photocatalytic activity of different titanium oxide nanowires containing gold (Au@TiO2NWs), and gold-graphene (Au@TiO2NWs-graphene), was evaluated by studying the reaction of hydrogen production by water splitting under UV–vis light. The composites showed high surface areas, with values above 300 m2 per gram, even after the incorporation of gold and graphene on the surface of titanium oxide nanowires. The highest hydrogen production of Au@TiO2NWs was 1436 μmol h–1 g–1, under irradiation at 400 nm, and with a gold loading of 10 wt %. This photocatalytic activity was 11.5 times greater than that shown by the unmodified TiO2NWs. For the Au@TiO2NWs-graphene composites, the highest hydrogen amount obtained was 1689 μmol h–1 g–1, at loadings of 10 and 1 wt % of gold and graphene, respectively. The photocatalytic activity of the gold-graphene compounds was 1.2 times greater than that shown by the titanium oxide catalysts and 13.5 times higher than the bare TiO2NWs. Even at wavelengths greater than 500 nm, the compounds exhibited yields of hydrogen above 1000 μmol h–1 g–1, demonstrating the high catalytic activity of the compounds. In addition, TiO2-based materials are of great interest for energy storage and conversion devices, in particular for rechargeable lithium ion batteries. TiO2 has a significant advantage due to its low volume change (<4%) during the Li ion insertion/desertion process, short paths for fast lithium ion diffusion, and large exposed surface, offering more lithium insertion channels. However, the relatively low theoretical capacity and electrical conductivity of TiO2 greatly hamper its practical application. In this work, free-standing electrodes composed by TiO2NWs and carbon nanotubes, CNT@TiO2NWs, were used as anode materials for Li-ion batteries. As a result, the electronic conductivity and mechanical properties of the composite were greatly improved and a good cycling performance was obtained in these batteries. This research shows the potential of TiO2-based materials for the development of new catalysts for hydrogen production and energy storage systems.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b07130

DOI: 10.1021/acs.jpcb.7b07130

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.