5 years ago

Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes

Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes
Till Frömling, Daniel Rettenwander, Lukas Porz, Reinhard Uecker, Stefan Berendts, Henry L. Thaman, Yet-Ming Chiang, Brian W. Sheldon, Tushar Swamy, W. Craig Carter
Li deposition is observed and measured on a solid electrolyte in the vicinity of a metallic current collector. Four types of ion-conducting, inorganic solid electrolytes are tested: Amorphous 70/30 mol% Li2S-P2S5, polycrystalline β-Li3PS4, and polycrystalline and single-crystalline Li6La3ZrTaO12 garnet. The nature of lithium plating depends on the proximity of the current collector to defects such as surface cracks and on the current density. Lithium plating penetrates/infiltrates at defects, but only above a critical current density. Eventually, infiltration results in a short circuit between the current collector and the Li-source (anode). These results do not depend on the electrolytes shear modulus and are thus not consistent with the Monroe–Newman model for “dendrites.” The observations suggest that Li-plating in pre-existing flaws produces crack-tip stresses which drive crack propagation, and an electrochemomechanical model of plating-induced Li infiltration is proposed. Lithium short-circuits through solid electrolytes occurs through a fundamentally different process than through liquid electrolytes. The onset of Li infiltration depends on solid-state electrolyte surface morphology, in particular the defect size and density. Lithium metal penetration through sulfide and oxide solid electrolytes that have been proposed for use in solid-state batteries occurs via the extension of pre-existing surface defects, of sizes down to submicron scale, due to electrodeposition-induced stresses.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/aenm.201701003

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.