3 years ago

An effective hydrosilylation of alkynes in supercritical CO2 – A green approach to alkenyl silanes

An effective hydrosilylation of alkynes in supercritical CO2 – A green approach to alkenyl silanes
Hydrosilylation of a wide group of alkynes (terminal and internal) with four structurally different silanes has been for the first time performed in supercritical CO2 (scCO2). The results clearly showed the advantages as well as the limitations of using of scCO2 as a reaction and extraction medium for hydrosilylation of numerous alkynes with different functionality and volatility. Procedures for the synthesis and isolation of over forty silyl ethenes were described, among which more than twenty for the first time. Obtained products were fully characterized by 1H, 13C, 29Si NMR, GC–MS, and EA. Moreover, by X-ray crystallography, the molecular structures of (E)-3-(1,1,1,3,5,5,5-heptamethyltrisiloxan-3-yl)-2,5-dimethylhex-3-ene-2,5-diol (3n) and (E)-triethyl(2-(triphenylsilyl)vinyl)silane (12a) have been determined for the first time.

Publisher URL: www.sciencedirect.com/science

DOI: S0021951717303561

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.