5 years ago

Soft Carbon as Anode for High-Performance Sodium-Based Dual Ion Full Battery

Soft Carbon as Anode for High-Performance Sodium-Based Dual Ion Full Battery
Bingan Lu, Ling Fan, Qian Liu, Suhua Chen, Zhi Xu
Sodium-based dual ion full batteries (NDIBs) are reported with soft carbon as anode and graphite as cathode for the first time. The NDIBs operate at high discharge voltage plateau of 3.58 V, with superior discharge capacity of 103 mA h g−1, excellent rate performance, and long-term cycling stability over 800 cycles with capacity retention of 81.8%. The mechanism of Na+ and PF6− insertion/desertion during the charging/discharging processes is proposed and discussed in detail, with the support of various spectroscopies. Sodium-based dual ion full batteries (NDIBs) are reported with soft carbon as anode and graphite as cathode for the first time. The NDIBs deliver high discharge voltage plateau of 3.58 V, superior discharge capacity of 103 mA h g−1, excellent rate performance, and long-term cycling stability over 800 cycles with capacity retention of 81.8%.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/aenm.201602778

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.