3 years ago

A Conductive Molecular Framework Derived Li2S/N,P-Codoped Carbon Cathode for Advanced Lithium–Sulfur Batteries

A Conductive Molecular Framework Derived Li2S/N,P-Codoped Carbon Cathode for Advanced Lithium–Sulfur Batteries
Wenkui Zhang, Lele Peng, Yu Ding, Ye Shi, Guihua Yu, Jun Zhang
Li2S is one of the most promising cathode materials for Li-ion batteries because of its high theoretical capacity and compatibility with Li-metal-free anode materials. However, the poor conductivity and electrochemical reactivity lead to low initial capacity and severe capacity decay. In this communication, a nitrogen and phosphorus codoped carbon (N,P–C) framework derived from phytic acid doped polyaniline hydrogel is designed to support Li2S nanoparticles as a binder-free cathode for Li–S battery. The porous 3D architecture of N and P codoped carbon provides continuous electron pathways and hierarchically porous channels for Li ion transport. Phosphorus doping can also suppress the shuttle effect through strong interaction between sulfur and the carbon framework, resulting in high Coulombic efficiency. Meanwhile, P doping in the carbon framework plays an important role in improving the reaction kinetics, as it may help catalyze the redox reactions of sulfur species to reduce electrochemical polarization, and enhance the ionic conductivity of Li2S. As a result, the Li2S/N,P–C composite electrode delivers a stable capacity of 700 mA h g−1 with average Coulombic efficiency of 99.4% over 100 cycles at 0.1C and an areal capacity as high as 2 mA h cm−2 at 0.5C. Nitrogen and phosphorus codoped carbon framework with Li2S nanoparticles impregnated is designed as a high-performance binder-free cathode for Li–S batteries. The porous 3D architecture facilitates fast ion and electron transport to each Li2S nanoparticle, improving the utilization of active material and rate capability.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/aenm.201602876

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.