3 years ago

Probing the Dynamic Nature of Self-Assembling Cyclic Peptide–Polymer Nanotubes in Solution and in Mammalian Cells

Probing the Dynamic Nature of Self-Assembling Cyclic Peptide–Polymer Nanotubes in Solution and in Mammalian Cells
Edward D. H. Mansfield, Sarah Rogers, Matthias Hartlieb, Raoul Peltier, Johannes C. Brendel, Liam R. MacFarlane, Julia Y. Rho, Sébastien Perrier
Self-assembling cyclic peptide–polymer nanotubes have emerged as a fascinating supramolecular system, well suited for a diverse range of biomedical applications. Due to their well-defined diameter, tunable peptide anatomy, and ability to disassemble in situ, they have been investigated as promising materials for numerous applications including biosensors, antimicrobials, and drug delivery. Despite this continuous effort, the underlying mechanisms of assembly and disassembly are still not fully understood. In particular, the exchange of units between individual assembled nanotubes has been overlooked so far, despite its knowledge being essential for understanding their behavior in different environments. To investigate the dynamic nature of these systems, cyclic peptide–polymer nanotubes are synthesized, conjugated with complementary dyes, which undergo a Förster resonance energy transfer (FRET) in close proximity. Model conjugates enable to demonstrate not only that their self-assembly is highly dynamic and not kinetically trapped, but also that the self-assembly of the conjugates is strongly influenced by both solvent and concentration. Additionally, the versatility of the FRET system allows studying the dynamic exchange of these systems in mammalian cells in vitro using confocal microscopy, demonstrating the exchange of subunits between assembled nanotubes in the highly complex environment of a cell. Dynamically exchanging supramolecular polymers observe via FRET. Self-assembling cyclic peptide–polymer nanotubes are widely studied for their biological applications, and show dynamic behavior in a range of different environments proven by FRET; mixing takes place not only in various solvents, but also in the complex environment within a cells.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adfm.201704569

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.