3 years ago

Unusual Twisting Phonons and Breathing Modes in Tube-Terminated Phosphorene Nanoribbons and Their Effects on Thermal Conductivity

Unusual Twisting Phonons and Breathing Modes in Tube-Terminated Phosphorene Nanoribbons and Their Effects on Thermal Conductivity
Xiangjun Liu, Yong-Wei Zhang, Gang Zhang, Junfeng Gao
By studying tube-terminated phosphorene nanoribbons (PNRs), it is found that unusual phonon and thermal properties can emerge from topologically new edges. The lattice dynamics calculations show that in tube-terminated PNRs, the breaking of rotation symmetry suppresses the degeneracy of phonon modes, causing the emergence of twisting mode. An anomalous change of an out-of-plane acoustic mode to breathing modes with nonzero energy at the center of Brillouin zone occurs when the phosphorene sheet is converted into a tube-terminated PNR. These unusual twisting and breathing modes provide a larger phase space for scattering phonons, thus explaining the low thermal conductivity of tube-terminated PNRs revealed by molecular dynamics calculations. Due to the change in the stress field distribution caused by the tube edge, a nearly strain-independent thermal conductivity in tube-terminated PNRs is observed, which is in contrast to the apparent enhancement of thermal conductivity in pristine and dimer-terminated PNRs under tensile strain. The work reveals intriguing phononic and thermal behaviors of tube-terminated 2D materials. Unusual phonon and thermal properties are observed for tube-terminated phosphorene nanoribbons. Converting the phosphorene sheet into a tube-edged phosphorene nanoribbon breaks the rotation symmetry. The degeneracy of phonon modes is suppressed, causing the emergence of a twisting mode and an anomalous change of the out-of-plane acoustic mode to breathing modes with nonzero energy at the center of Brillouin zone occurs.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adfm.201702776

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.