5 years ago

Novel tertiary dry solid lubricant on steel surfaces reduces significant friction and wear under high load conditions

Novel tertiary dry solid lubricant on steel surfaces reduces significant friction and wear under high load conditions
A novel graphene-zinc oxide composite film is created and studied as a solid-state lubricant for friction and wear reduction under extreme load conditions. The liquid-free composite is made from a slurry of graphene, zinc oxide, and polyvinylidene difluoride spin-coated onto a stainless steel substrate. Enhanced tribological performance was measured under ambient conditions using a ball-on-disk tribometer with contact pressures up to 1.02 GPa and sliding distances up to 450 m. The graphene-rich lubricant demonstrates substantial friction and wear reduction (ca. 90%) compared to unlubricated sliding. The composite film is able to maintain its lubricating effects under extreme operating conditions including 15 N normal load and 450 m sliding distance. Following tribological testing, optical and spectroscopic analysis of the formed wear scars reveal a persistent protective film on the ball and disk surfaces. The excellent tribological performance of this graphene-rich composite is attributed to the adhesion effect from zinc oxide: zinc adheres graphene to the contact interface, maintaining improved tribological performance under high contact pressure. The durability and resilience of this adhesive coating suggest exceptional potential as a dry lubricant for high load-bearing applications.

Publisher URL: www.sciencedirect.com/science

DOI: S0008622317307133

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.