3 years ago

Interfacial modification mechanism of nanocellulose as a compatibilizer for immiscible binary poly(vinyl alcohol)/poly(ethylene oxide) blends

Interfacial modification mechanism of nanocellulose as a compatibilizer for immiscible binary poly(vinyl alcohol)/poly(ethylene oxide) blends
Mingjie Guan, Xiuxuan Sun, Cheng Yong, Changtong Mei, Ke Wang, Bing Xu, Qinglin Wu
We undertook this study to understand reinforcement mechanism of short cellulose nanocrystals (CNCs) and long cellulose nanofibrils (CNFs) as compatibility agents for improving the interfacial miscibility of poly(vinyl alcohol) (PVA) and poly(ethylene oxide) (PEO) blends. The effects of the two cellulose nanofibers on the morphological, mechanical, and thermal properties of the polymer blends were compared systematically. The light transparency, scanning electron microscopy, and Fourier transform infrared results show that nanocellulose between PVA and PEO eliminated the negative effects generated by the immiscible interface through increased hydrogen bonding. Thermogravimetric analysis and differential scanning calorimetry results show that crystalline region reorganization around the interface facilitated the shift of the polymer blends from multiple phases to a homogeneous phase. According to the Halpin-Kardos and Quali models, we assumed that the potential for repairing the immiscible interface would have a larger effect than the potential of reinforcement. At the same concentration, polymer blends with CNCs showed greater light transparency, strength, modulus, and crystal structure than with those with CNFs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 135, 45896.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/app.45896

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.