3 years ago

Heat flow diversion in supported graphene nanomesh

Heat flow diversion in supported graphene nanomesh
Redirection of energy carrier propagation by geometric confinement is studied through the analysis of in-plane and cross-plane thermal transport within various graphene nanomesh (GNM) configurations using molecular dynamics (MD) simulations. As the transport channel width decreases with an increase in porosity, the effect of redirection increases; thus, the in-plane thermal conductivity of large-porosity GNM is more dependent on hole arrangement. Since higher porosities weaken the GNM structure due to a larger population of broken bonds, carbon atoms within the graphene structures are more easily influenced by interactions with the substrate silicon (Si) block. Subsequently, increase in porosity leads to the decrease of interfacial thermal resistance. At higher porosities, lower interfacial resistance and in-plane thermal conductivity cause diversions (and redirections) in heat flow from the GNM to the underlying Si substrate. Our study suggests that this method of heat flow redirection can be applied as an effective means to control and manage heat transfer within numerous applications; extension to the improved conductivity calculation accuracy can also be achieved through the inclusion of this diversion analysis.

Publisher URL: www.sciencedirect.com/science

DOI: S000862231730708X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.