3 years ago

FRET Analysis of the Promiscuous yet Specific Interactions of the HIV-1 Vpu Transmembrane Domain

FRET Analysis of the Promiscuous yet Specific Interactions of the HIV-1 Vpu Transmembrane Domain
Gregory B. Cole, Simon Sharpe, Sean E. Reichheld

Abstract

The Vpu protein of HIV-1 functions to downregulate cell surface localization of host proteins involved in the innate immune response to viral infection. For several target proteins, including the NTB-A and PVR receptors and the host restriction factor tetherin, this antagonism is carried out via direct interactions between the transmembrane domains (TMDs) of Vpu and the target. The Vpu TMD also modulates homooligomerization of this protein, and the tetherin TMD forms homodimers. The mechanism through which a single transmembrane helix is able to recognize and interact with a wide range of select targets that do not share known interaction motifs is poorly understood. Here we use Förster resonance energy transfer to characterize the energetics of homo- and heterooligomer interactions between the Vpu TMD and several target proteins. Our data show that target TMDs compete for interaction with Vpu, and that formation of each heterooligomer has a similar dissociation constant (Kd) and free energy of association to the Vpu homooligomer. This leads to a model in which Vpu monomers, Vpu homooligomers, and Vpu-target heterooligomers coexist, and suggests that the conserved binding surface of Vpu TMD has been selected for weak binding to multiple targets.

Publisher URL: http://www.cell.com/biophysj/fulltext/S0006-3495(17)31021-4

DOI: 10.1016/j.bpj.2017.09.010

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.