3 years ago

Electrically tunable large magnetoresistance in graphene/silicon Schottky junctions

Electrically tunable large magnetoresistance in graphene/silicon Schottky junctions
It should be a promising paradigm for graphene application in semiconductor industry by incorporating graphene into silicon to improve the behavior of silicon-based devices or develop high-performance devices with a new physical mechanism. Here we report on a large positive magnetoresistance (MR) over 80% at a magnetic field of 2.2 T and a temperature of 80 K in graphene/Si Schottky junctions by stacking chemical vapor deposition derived monolayer graphene on silicon. The produced MR is anisotropic and dependent on the angle between the direction of the magnetic field and the configuration plane, and can be modulated by the electrical bias across the configuration due to the built-in electric field. The MR effect should be ascribed to the charge carriers scattering and the released silicon magnetic moments in the graphene/Si interface that is suggested by first principles calculations. The study here should be helpful to understand the interface between the graphene and silicon, develop high-performance silicon based devices, complement the extraordinary properties of graphene and open one possible way to exploit their application for magneto-electronics.

Publisher URL: www.sciencedirect.com/science

DOI: S0008622317307340

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.