3 years ago

Anaerobic digestion of chicken manure: Mitigating process inhibition at high ammonia concentrations by selenium supplementation

Anaerobic digestion of chicken manure: Mitigating process inhibition at high ammonia concentrations by selenium supplementation
In this study, the anaerobic digestion of nitrogen-rich chicken manure from egg-laying hens was investigated via long-term continuous experiments with and without the addition of different trace elements. With trace element supplementation, a CH4 yield of 0.26 ± 0.03 m3 kg−1 of volatile solids (VS) added was achieved at an organic loading rate (OLR) of 3.62 kg m−3 day−1 based on VS and total ammonia nitrogen (TAN) content greater than 7200 g m−3. Selenium (Se) was identified as the critical trace element for the stable anaerobic digestion of chicken manure. The dominant methanogen in the reactors was the hydrogenotrophic methanogen Methanoculleus bourgensis. Therefore, we concluded that at elevated TAN concentrations, the CH4 production stimulated by Se supplementation likely occurred through syntrophic acetate oxidation. Without trace element supplementation, severe acetic and propionic acid accumulation occurred, causing the CH4 yield to decrease below 0.12 m3 kg−1 of VS added.

Publisher URL: www.sciencedirect.com/science

DOI: S0961953417303665

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.