5 years ago

Spin orbit interaction fingerprints of a ballistic graphene Josephson junction

Spin orbit interaction fingerprints of a ballistic graphene Josephson junction
In this study, we establish the universal characteristics of the contributions of the Rashba spin orbit interaction (RSOI) and the Dresselhaus spin orbit interaction (DSOI) to the supercurrent in a graphene Josephson junction. The most striking property of the skewness and the critical supercurrent, so far not unequivocally revealed, is the presence of a maximum value or a single singularity at the key point (the DSOI equates to half of the RSOI) in pristine case. This is in sharp contrast to that in conventional Josephson junction (the π junction) and its counterpart in heavily doped graphene case (monotonically decay). Using a general delta potential model, we determine the barrier effect on the quasilocalized Andreev level (π periodic) and the propagating Andreev mode (π/2 periodic). Moreover, we trace the pronounced critical supercurrent Fabry–Pérot oscillations patterns as a function of the doping level, and find that it shows a good qualitative agreement with the recent experiment of M. Ben Shalom et al. [Nat. Phys. 12, 318 (2016)]. Our results show that definitive signatures of specular Andreev reflection can be observed in the graphene material and suggest that the graphene Josephson junction can lead to a new possible application in quantum computing.

Publisher URL: www.sciencedirect.com/science

DOI: S0008622317305924

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.