3 years ago

A method for making inferences in network analysis: Comment on Forbes, Wright, Markon, and Krueger (2017).

Michaela Hoffman, Kenneth J Sher, Michael J Brusco, Douglas Steinley
Forbes, Wright, Markon, and Krueger (2017) make a compelling case for proceeding cautiously with respect to the overinterpretation and dissemination of results using the increasingly popular approach of creating "networks" from co-occurrences of psychopathology symptoms. We commend the authors on their initial investigation and their utilization of cross-validation techniques in an effort to capture the stability of a variety of network estimation methods. Such techniques get at the heart of establishing "reproducibility," an increasing focus of concern in both psychology (e.g., Pashler & Wagenmakers, 2012) and science more generally (e.g., Baker, 2016). However, as we will show, the problem is likely worse (or at least more complicated) than they initially indicated. Specifically, for multivariate binary data, the marginal distributions enforce a large degree of structure on the data. We show that some expected measurements-such as commonly used centrality statistics-can have substantially higher values than what would usually be expected. As such, we propose a nonparametric approach to generate confidence intervals through Monte Carlo simulation. We apply the proposed methodology to the National Comorbidity Survey - Replication, provided by Forbes et al., finding that the many of the results are indistinguishable from what would be expected by chance. Further, we discuss the problem of multiple testing and potential issues of applying methods developed for 1-mode networks (e.g., ties within a single set of observations) to 2-mode networks (e.g., ties between 2 distinct sets of entities). When taken together, these issues indicate that the psychometric network models should be employed with extreme caution and interpreted guardedly. (PsycINFO Database Record

Publisher URL: http://doi.org/10.1037/abn0000308

DOI: 10.1037/abn0000308

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.