3 years ago

Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales

Thomas D. Bruns, Sydney I. Glassman, Ian J. Wang
Whether niche processes, like environmental filtering, or neutral processes, like dispersal limitation, are the primary forces driving community assembly is a central question in ecology. Here, we use a natural experimental system of isolated tree “islands” to test whether environment or geography primarily structures fungal community composition at fine spatial scales. This system consists of isolated pairs of two distantly-related, congeneric pine trees established at varying distances from each other and the forest edge, allowing us to disentangle the effects of geographic distance versus host and edaphic environment on associated fungal communities. We identified fungal community composition with Illumina sequencing of ITS amplicons, measured all relevant environmental parameters for each tree - including tree age, size, and soil chemistry - and calculated geographic distances from each tree to all others and to the nearest forest edge. We applied generalized dissimilarity modeling to test whether total and ectomycorrhizal fungal (EMF) communities were primarily structured by geographic or environmental filtering. Our results provide strong evidence that, as in many other organisms, niche and neutral processes both contribute significantly to turnover in community composition in fungi, but environmental filtering plays the dominant role in structuring both free-living and symbiotic fungal communities at fine spatial scales. In our study system, we found pH and organic matter primarily drive environmental filtering in total soil fungal communities and that pH and cation exchange capacity – and, surprisingly, not host species - were the largest factors affecting EMF community composition. These findings support an emerging paradigm that pH may play a central role in the assembly of all soil mediated systems. This article is protected by copyright. All rights reserved.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/mec.14414

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.