3 years ago

Carbon-bromine bond cleavage – A perspective from bromine and carbon kinetic isotope effects on model debromination reactions

Carbon-bromine bond cleavage – A perspective from bromine and carbon kinetic isotope effects on model debromination reactions
In this work, we explore the effect of solvent on 13C and 81Br kinetic isotope effects (KIEs) during elimination of bromine substituent from brominated organic compounds promoted by hydroxyl anion. In the present study, we investigate HBr elimination from 2-bromoethylbenzene in three different polar media (water, ethanol, and acetonitrile) as well as bromide ion elimination from 1,2-dibromoethane upon nucleophilic substitution by the hydroxyl ion in aqueous solution using carbon and bromine isotope analysis as mechanistic tools. We reconsider the hypothesis that the magnitude of leaving group halide KIE should visibly depend on the solvent and bond-breaking in a protic solvent should be accompanied by hydrogen bonding which would result in less zero-point energy loss than in an aprotic solvent. Modeling the elimination reaction using the available popular theoretical methods along with different approaches for including environment effects we demonstrate in the presented study no interpretable effect of the solvent on the transition state structure and hence on the theoretically predicted KIEs. The comparison of the magnitudes of carbon and bromine kinetic isotope effects for two different mechanistic pathways (elimination vs substitution) is also discussed.

Publisher URL: www.sciencedirect.com/science

DOI: S0045653517317381

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.