3 years ago

Effective degradation of primary color direct azo dyes using Fe0 aggregates-activated persulfate process

Effective degradation of primary color direct azo dyes using Fe0 aggregates-activated persulfate process
The present study examined the oxidation power of a Fe0 aggregates/persulfate (PS/Fe0) system for the degradation of the wastewater containing mixed primary direct dyes (i.e., Sirius® Gelb S-2G, Sirius® Red F3B, and Sirius® Turkis GL01). Results indicated that decolorization efficiency was determined by operating parameters of the PS/Fe0 system and the structural complexity of dye molecules. System efficiency increased with increasing persulfate and Fe0 dosages. Faster decolorization was observed in experiments conducted at pH < 10. The process obeyed a first-order kinetics. Slow heterogeneous reactions were observed at high initial pH (>10.5) and low PS concentration (<2 × 10−3 M). Inhibitory effect occurred in systems containing salts Na2SO4, NaCl, Na2CO3, and Na2HPO4 at 1 × 10−2 M. The effect was suppressed when reaction temperature was raised to 55 °C. Heat enhanced not only decolorization efficiency, but also COD removal. Complete decolorization of a mixed dye containing ADMI (the American Dye Manufacture Institute) 15105 was achieved within10 min in the PS/Fe0/55 °C system with an initial pH of 6.0 and dosages of 5 × 10−3 M Na2S2O8 and 0.5 g/L Fe0. Low molecular weight intermediates including organic acids were identified. Due to a relatively low activation energy (4.68 kcaL/mol), the PS/Fe0 system exhibited higher efficiency at higher temperature. This study demonstrated that Fe0-activated PS is a promising process for the treatment of textile wastewaters containing mixed azo direct dyes.

Publisher URL: www.sciencedirect.com/science

DOI: S0301479717310812

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.