3 years ago

Marked reduction in demographic rates and reduced fitness advantage for early breeding is not linked to reduced thermal matching of breeding time

Marked reduction in demographic rates and reduced fitness advantage for early breeding is not linked to reduced thermal matching of breeding time
Tomas Pärt, Debora Arlt
Warmer springs may cause animals to become mistimed if advances of spring timing, including available resources and of timing of breeding occur at different speed. We used thermal sums (cumulative sum of degree days) during spring to describe the thermal progression (timing) of spring and investigate its relationship to breeding phenology and demography of a long-distant migrant bird, the northern wheatear (Oenanthe oenanthe L.). We first compare 20-year trends in spring timing, breeding time, selection for breeding time, and annual demographic rates. We then explicitly test whether annual variation in selection for breeding time and demographic rates associates with the degree of phenological matching between breeding time and thermal progression of spring. Both thermal progression of spring and breeding time of wheatears advanced in time during the study period. But despite breeding on average 7 days earlier with respect to date, wheatears bred about 4 days later with respect to thermal spring progression. Over the same time period, selection for breeding time changed from distinct within-season advantage of breeding early to no or very weak advantage. Furthermore, demographic rates (nest success, fledgling production, recruitment, adult survival) and nestling weight declined markedly by 16%–79%. Those temporal trends suggest that a reduced degree of phenological matching may affect within-season fitness advantage of early breeding and population demographic rates. In contrast, when we investigate links based on annual variation, we find no significant relationship between either demographic rates or fitness advantage of early breeding with annual variation in the degree of phenological matching. Our results show that corresponding temporal trends in phenological matching, selection for breeding time and demographic rates are inconclusive evidence for demographic effects of changed phenological matching. Instead, we suggest that the trends in selection for breeding time and demographic rates are due to a general deterioration of the breeding environment. Thermal progression of spring and breeding time of wheatears advanced, but despite breeding earlier with respect to date, wheatears bred later with respect to thermal spring progression. Over the same time period, selection for breeding time changed and demographic rates and nestling weight declined markedly. Despite superficial evidence from those trends suggesting demographic effects of changes in phenological matching between timing of breeding and thermal progression of spring, direct evidence, from links based on annual variation of the degree of phenological matching and within-season fitness advantage of early breeding and population demographic rates, was lacking.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/ece3.3603

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.