5 years ago

Triboelectric nanogenerator for Mars environment

Triboelectric nanogenerator for Mars environment
Consistent and reliable power supply is critical for interplanetary exploration missions and habitats on Mars. Abundant wind, strong dust storms and surface vibrations on Mars are attractive mechanical sources to convert into electrical energy. Conventional electromagnetic generators are unsuitable for planetary exploration due to the heavy weight of permanent magnets and metal coils and high launch costs. Triboelectric nanogenerator (TENG) yielding high output power per mass is a potential alternative. The impact of Mars environment on triboelectricity generation is an unknown but critical issue, which is investigated here using a Mars analogue weather chamber. Individual and combined effects of environmental factors such as atmospheric pressure, atmospheric composition, temperature, ultraviolet and gamma radiations on the performance of TENG are analyzed. The potential of TENG for Mars exploration is addressed based on the experimental results and scientific implication.

Publisher URL: www.sciencedirect.com/science

DOI: S2211285517304093

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.