3 years ago

Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst
Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarcity. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides are their low electronic conductivity and durability. The carbon encapsulating transition metal nanoparticles are expected to address these challenges. However, the relationship between precursor compositions and catalyst properties, and the intrinsic functions of each component has been rarely studied. Herein, we report a highly durable (no degradation after 20,000 cycles) and highly active (360mV overpotential at 10mAcm–2 GEO) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron–donation/deviation from Fe and tuned lattice and electronic structures of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.

Publisher URL: www.sciencedirect.com/science

DOI: S2211285517304135

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.