3 years ago

Constructing Ohmic contact in cobalt selenide/Ti dyadic electrode: The third aspect to promote the oxygen evolution reaction

Constructing Ohmic contact in cobalt selenide/Ti dyadic electrode: The third aspect to promote the oxygen evolution reaction
Oxygen evolution reaction (OER) is a kinetically slow process for overall water splitting, particularly in neutral electrolyte. Great efforts have been devoted to the control in either composition or mesoscale structure of the nanocatalysts for accelerating the OER performance. However, the interface between the nanocatalysts and current collector, the third aspect to be considered for the design of an OER dyadic electrode, has been less touched till now. As a proof-of-concept study here, we described the importance of constructing an Ohmic contact at the interface of the cobalt selenide nanostructures (as the active components) and the Ti mesh (as the current collector) to significantly promote the OER performance in neutral electrolyte. The cobalt selenide/Ti mesh hybrid electrode could provide a current density of 29.6mAcm−2 at an OER overpotential of 570mV and high durability in neutral medium.

Publisher URL: www.sciencedirect.com/science

DOI: S2211285517304214

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.