3 years ago

High performance planar perovskite solar cells by ZnO electron transport layer engineering

High performance planar perovskite solar cells by ZnO electron transport layer engineering
ZnO as electron extraction layer in photovoltaic devices has many advantages, including high mobility and low processing temperature. However, it has been underutilized in perovskite solar cells due to the reported instabilities of perovskite layers deposited on ZnO resulting in poor device performance. Herein, we modify the ZnO layer by incorporating Cs or Li dopants in its bulk and depositing a self-assembled monolayer on its surface. This combined approach of engineering both the bulk and surface properties of ZnO results in significant improvements in the performance of planar MAPbI3 perovskite solar cells with a maximum power conversion efficiency of 18%, accompanied by a reduction in hysteresis and a significant enhancement of the device stability. Our work makes engineered solution-processed ZnO layers a practical alternative to TiO2 as electron extraction layers in perovskite solar cells, while also eliminating the need for high temperature sintering steps from the device fabrication.

Publisher URL: www.sciencedirect.com/science

DOI: S2211285517304238

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.