5 years ago

Rational design of freestanding MoS2 monolayers for hydrogen evolution reaction

Rational design of freestanding MoS2 monolayers for hydrogen evolution reaction
Molybdenum disulfide (MoS2) presents a promising nonprecious catalyst for hydrogen evolution reaction (HER) that has attracted extensive interest, but it still lacks an effective way to advance the utilization, in particular the basal plane of freestanding 2H-MoS2 for HER. Herein, we report a rational design of freestanding 2H-MoS2 monolayers to maximize the synergistic activity for HER by combining crystallinity engineering and cobalt substitution. Electrochemical measurements and density functional theory calculations indicate that the combination of crystallinity engineering and cobalt substitution in monolayer 2H-MoS2 can not only introduce massive defects that act as new active sites but also activate and make use of the basal plane, which is responsible for the much enhanced HER activity compared to independent crystallinity engineering or cobalt substitution. Impressively, when integrated with a photoharvester cadmium sulfide for photocatalytic hydrogen evolution, the synergistic effect also promotes an excellent cocatalytic performance of monolayer 2H-MoS2 that even higher than platinum (Pt). This study potentially provide new avenues for designing more efficient MoS2-based and other layered materials with enhanced HER performance.

Publisher URL: www.sciencedirect.com/science

DOI: S2211285517304342

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.