3 years ago

Comparative modeling and molecular docking analysis of white, brown and soft rot fungal laccases using lignin model compounds for understanding the structural and functional properties of laccases

Comparative modeling and molecular docking analysis of white, brown and soft rot fungal laccases using lignin model compounds for understanding the structural and functional properties of laccases
Extrinsic catalytic properties of laccase enable it to oxidize a wide range of aromatic (phenolic and non-phenolic) compounds which makes it commercially an important enzyme. In this study, we have extensively compared and analyzed the physico-chemical, structural and functional properties of white, brown and soft rot fungal laccases using standard protein analysis software. We have computationally predicted the three-dimensional comparative models of these laccases and later performed the molecular docking studies using the lignin model compounds. We also report a customizable rapid and reliable protein modelling and docking pipeline for developing structurally and functionally stable protein structures. We have observed that soft rot fungal laccases exhibited comparatively higher structural variation (higher random coil) when compared to brown and white rot fungal laccases. White and brown rot fungal laccase sequences exhibited higher similarity for conserved domains of Trametes versicolor laccase, whereas soft rot fungal laccases shared higher similarity towards conserved domains of Melanocarpus albomyces laccase. Results obtained from molecular docking studies showed that aminoacids PRO, PHE, LEU, LYS and GLN were commonly found to interact with the ligands. We have also observed that white and brown rot fungal laccases showed similar docking patterns (topologically monomer, dimer and trimer bind at same pocket location and tetramer binds at another pocket location) when compared to soft rot fungal laccases. Finally, the binding efficiencies of white and brown rot fungal laccases with lignin model compounds were higher compared to the soft rot fungi. These findings can be further applied in developing genetically efficient laccases which can be applied in growing biofuel and bioremediation industries.

Publisher URL: www.sciencedirect.com/science

DOI: S109332631730551X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.