5 years ago

Enhancing efficiency and stability of perovskite solar cells via a high mobility p-type PbS buffer layer

Enhancing efficiency and stability of perovskite solar cells via a high mobility p-type PbS buffer layer
Although the perovskite solar cells (PSCs) based on organic hole transport materials (HTMs) have demonstrated excellent photovoltaic performance, there are still some obstacles that limiting their future commercialization, one of which is the device stability. Herein, we first report that depositing a (200) orientated PbS thin film upon organic HTMs as buffer layer can significantly enhance the stability and improve the performance of PSCs. The superior hole extraction efficiency of spiro-OMeTAD/PbS bilayer can balance the charge transfer and the hydrophobic nature of PbS could avoid the permeation of moisture. As a result, the PSCs with PbS buffer layer exhibited a better photovoltaic performance (a champion power conversion efficiency of 19.58%) with respect to the reference cells (18.79%), and maintained almost 100% of its initial PCE after 1000h stored in ambient air. Furthermore, when suffer from some more severe conditions, the device with PbS retained 56% of its initial PCE after 96h annealing at 85°C, while only 25% for the reference cells. Our results provide a simple method to avoid the weakness of organic HTMs, and suggest that PbS thin film could be an alternative buffer layer material in PSCs to simultaneously improve the device stability and photovoltaic performance.

Publisher URL: www.sciencedirect.com/science

DOI: S2211285517303178

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.