3 years ago

Soot Oxidation Activity of Redox and Non-Redox Metal Oxides Synthesised by EDTA–Citrate Method

Anjana P. Anantharaman, G. Uday Bhaskar Babu, Hari Prasad Dasari, Harshini Dasari, Jong-Ho Lee

Abstract

In the present study, redox (CeO2, SnO2, Pr6O11 and Mn3O4) and non-redox (Gd2O3, La2O3 ZrO2 and HfO2) metal oxides were successfully synthesised using the EDTA–citrate complexing method and tested for soot oxidation activity. The characterization of the metal oxides is carried out using FTIR, XRD, BET surface area, pore volume analyser, SEM and TEM. The redox nature and metal–oxygen bond information of the metal oxides are obtained from XPS analysis. In redox metal oxides, three critical parameters [lattice oxygen binding energy, reduction temperature and Δr (ionic size difference of the corresponding metal oxide oxidation states)] govern the soot oxidation activity. Among the redox metal oxide samples, Mn3O4 and Pr6O11 samples showed lower binding energy for oxygen (Oβ—529.4, 528.9 eV respectively), lower reduction temperature (Tα—317 and 512 °C respectively) and have smaller Δr value (9 pm and 17 pm respectively). Thus, displayed a better soot oxidation activity (T50 = 484 and 482 °C respectively) than compared to other redox metal oxides. Among the non-redox metal oxides, HfO2 sample displayed higher BET surface area (21.06 m2/g), lattice strain (0.0157), smaller ionic radius (58.2 pm) and higher relative surface oxygen ratio (58%) and thus resulted in a significantly better soot oxidation activity (T50 = 483 °C) than compared to other non-redox metal oxides.

Graphical Abstract

Publisher URL: https://link.springer.com/article/10.1007/s10562-017-2181-7

DOI: 10.1007/s10562-017-2181-7

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.