3 years ago

Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: recent advances and the future directions

Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: recent advances and the future directions
Reverse water gas shift (RWGS) reaction can be served as a pivotal stage of transitioning the abundant CO2 resource into chemicals or hydrocarbon fuels, which is attractive for the CO2 utilization and of eventually significance in enabling a rebuilt ecological system for unconventional fuels. This concept is appealing when the process is considered as a solution for the storage of renewable energy, which may also find a variety of potential end uses for the outer space exploration. However, a big challenge to this issue is the rational design of high temperature endurable RWGS catalysts with desirable CO product selectivity. In this work, we present a comprehensive overview of recent publications on this research topic, mainly focusing on the catalytic performance of RWGS reaction over three major kinds of heterogeneous catalysts, including supported metal catalysts, mixed oxide catalysts and transition metal carbides. The reaction thermodynamic analysis, kinetics and mechanisms are also described in detail. The present review attempts to provide a general guideline about the construction of well-performed heterogeneous catalysts for the RWGS reaction, as well as discussing the challenges and further prospects of this process.

Publisher URL: www.sciencedirect.com/science

DOI: S2095495617305247

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.