3 years ago

Retainment of r-process material in dwarf galaxies.

Paz Beniamini, Joe Silk, Irina Dvorkin

The synthesis of $r$-process elements is known to involve extremely energetic explosions. At the same time, recent observations find significant $r$-process enrichment even in extremely small ultra-faint dwarf (UFD) galaxies. This raises the question of retainment of those elements within their hosts. We estimate the retainment fraction and find that it is large $\sim 0.9$, unless the $r$-process event is very energetic ($\gtrsim 10^{52}$erg) and / or the host has lost a large fraction of its gas prior to the event. We estimate the $r$-process mass per event and rate as implied by abundances in UFDs, taking into account imperfect retainment and different models of UFD evolution. The results are consistent with previous estimates \citep{Beniamini2016} and with the constraints from the recently detected macronova accompanying a neutron star merger (GW170817). We also estimate the distribution of abundances predicted by these models. We find that $\sim 0.07$ of UFDs should have $r$-process enrichment. The results are consistent with both the mean values and the fluctuations of [Eu/Fe] in galactic metal poor stars, supporting the possibility that UFDs are the main 'building blocks' of the galactic halo population.

Publisher URL: http://arxiv.org/abs/1711.02683

DOI: arXiv:1711.02683v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.