4 years ago

Three candidate double clusters in the LMC: truth or dare?.

A. L. Varri, M. Bellazzini, F. R. Ferraro, B. Lanzoni, E. Lapenna, L. Origlia, A. Zocchi, E. Dalessandro, A. Mucciarelli

The Large Magellanic Cloud (LMC) hosts a large number of candidate stellar cluster pairs. Binary stellar clusters provide important clues about cluster formation processes and the evolutionary history of the host galaxy. However, to properly extract and interpret this information, it is crucial to fully constrain the fraction of real binary systems and their physical properties. Here we present a detailed photometric analysis based on ESO-FORS2 images of three candidate cluster multiplets in the LMC, namely SL349-SL353, SL385-SL387-NGC1922 and NGC1836-BRHT4b-NGC1839. For each cluster we derived ages, structural parameters and morphological properties. We have also estimated the degree of filling of their Roche lobe, as an approximate tool to measure the strength of the tidal perturbations induced by the LMC. We find that the members of the possible pairs SL349-SL353 and BRHT4b-NGC1839 have a similar age ($t = 1.00 \pm 0.12$ Gyr and $t = 140 \pm 15$ Myr, respectively), thus possibly hinting to a common origin of their member systems We also find that all candidate pairs in our sample show evidence of intra-cluster overdensities that can be a possible indication of real binarity. Particularly interesting is the case of SL349-SL353. In fact, SL353 is relatively close to the condition of critical filling, thus suggesting that these systems might actually constitute an energetically bound pair. It is therefore key to pursue a detailed kinematic screening of such clusters, without which, at present, we do not dare making a conclusive statement about the true nature of this putative pair.

Publisher URL: http://arxiv.org/abs/1711.02731

DOI: arXiv:1711.02731v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.