3 years ago

Signatures of the Many-body Localized Regime in Two Dimensions.

Arijeet Pal, Steven H. Simon, Thorsten B. Wahl

Lessons from Anderson localization highlight the importance of dimensionality of real space for localization due to disorder. More recently, studies of many-body localization have focussed on the phenomena in one dimension using techniques of exact diagonalization and tensor networks. On the other hand experiments in two dimensions have provided concrete results going beyond the previously numerically accessible limits while posing several challenging questions. We present the first large-scale numerical examination of a disordered Bose-Hubbard model in two dimensions realized in cold atoms, which shows entanglement based signatures of many-body localization. By generalizing a low-depth quantum circuit to two dimensions we approximate eigenstates in the experimental parameter regimes for large systems, which is beyond the scope of exact diagonalization. A careful analysis of the eigenstate entanglement structure provides an indication of the putative phase transition marked by the peak in the fluctuations of entanglement entropy in a parameter range potentially consistent with experiments.

Publisher URL: http://arxiv.org/abs/1711.02678

DOI: arXiv:1711.02678v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.