3 years ago

Photonic Nambu-Goldstone bosons.

Miguel Ángel García-March, Albert Ferrando, Humberto Michinel, Mario Zacarés, Ángel Paredes

We study numerically the spatial dynamics of light in periodic square lattices in the presence of a Kerr term, emphasizing the peculiarities stemming from the nonlinearity. We find that, under rather general circumstances, the phase pattern of the stable ground state depends on the character of the nonlinearity: the phase is spatially uniform if it is defocusing whereas in the focusing case, it presents a chess board pattern, with a difference of $\pi$ between neighboring sites. We show that the lowest lying perturbative excitations can be described as perturbations of the phase and that finite-sized structures can act as tunable metawaveguides for them. The tuning is made by varying the intensity of the light that, because of the nonlinearity, affects the dynamics of the phase fluctuations. We interpret the results using methods of condensed matter physics, based on an effective description of the optical system. This interpretation sheds new light on the phenomena, facilitating the understanding of individual systems and leading to a framework for relating different problems with the same symmetry. In this context, we show that the perturbative excitations of the phase are Nambu-Goldstone bosons of a spontaneously broken $U(1)$ symmetry.

Publisher URL: http://arxiv.org/abs/1707.02213

DOI: arXiv:1707.02213v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.