3 years ago

Atypical energy eigenstates in the Hubbard chain and quantum disentangled liquids.

arXiv:1611.02075, Thomas Veness, Matthew P. A. Fisher, Fabian H. L. Essler

We investigate the implications of integrability for the existence of quantum disentangled liquid (QDL) states in the half-filled one-dimensional Hubbard model. We argue that there exist finite energy-density eigenstates that exhibit QDL behaviour in the sense of J. Stat. Mech. P10010 (2014). These states are atypical in the sense that their entropy density is smaller than that of thermal states at the same energy density. Furthermore, we show that thermal states in a particular temperature window exhibit a weaker form of the QDL property, in agreement with recent results obtained by strong-coupling expansion methods in arXiv:1611.02075. This article is part of the themed issue `Breakdown of ergodicity in quantum systems: from solids to synthetics matter'.

Publisher URL: http://arxiv.org/abs/1711.02738

DOI: arXiv:1711.02738v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.