5 years ago

Plastic Deformation through Dislocation Saturation in Ultrasmall Pt Nanocrystals and Its in Situ Atomistic Mechanisms

Plastic Deformation through Dislocation Saturation in Ultrasmall Pt Nanocrystals and Its in Situ Atomistic Mechanisms
Xiaodong Han, Lihua Wang, Ze Zhang, Xuechao Sha, Jin Zou, Jiao Teng
The atomic-scale deformation dynamic behaviors of Pt nanocrystals with size of ∼18 nm were in situ investigated using our homemade device in a high-resolution transmission electron microscope. It was discovered that the plastic deformation of the nanosized single crystalline Pt commenced with dislocation “appreciation” first, then followed by a dislocation “saturation” phenomenon. The magnitude of strain plays a key role on dislocation behaviors. At the early to medium stage of deformation, the plastic deformation was controlled by the full dislocation activities accompanied by the formation of Lomer dislocation locks from reaction of full dislocations. When the strain increased to a significant level, stacking faults and extended dislocations as well as Lomer–Cottrell locks appeared. The Lomer–Cottrell locks can unlock through transferring into Lomer dislocation locks first, and then Lomer dislocation locks were destructed under high stresses. The very high density dislocations and the frequent dislocation reactions through Lomer dislocations and Lomer–Cottrell locks may lead to work hardening in nanosized Pt.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b01416

DOI: 10.1021/acs.nanolett.7b01416

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.