3 years ago

Toward Reliable Lipoprotein Particle Predictions from NMR Spectra of Human Blood: An Interlaboratory Ring Test

Toward Reliable Lipoprotein Particle Predictions from NMR Spectra of Human Blood: An Interlaboratory Ring Test
Claire Cannet, John van Duynhoven, Niels de Roo, Hartmut Schäfer, Parvaneh Ebrahimi, Huub C. J. Hoefsloot, Doris M. Jacobs, Eberhard Humpfer, Bekzod Khakimov, Sandra Monsonis Centelles, Fang Fang, Mads V. Lind, Manfred Spraul, Søren B. Engelsen, Mette Kristensen, Age K. Smilde
Lipoprotein profiling of human blood by 1H nuclear magnetic resonance (NMR) spectroscopy is a rapid and promising approach to monitor health and disease states in medicine and nutrition. However, lack of standardization of measurement protocols has prevented the use of NMR-based lipoprotein profiling in metastudies. In this study, a standardized NMR measurement protocol was applied in a ring test performed across three different laboratories in Europe on plasma and serum samples from 28 individuals. Data was evaluated in terms of (i) spectral differences, (ii) differences in LPD predictions obtained using an existing prediction model, and (iii) agreement of predictions with cholesterol concentrations in high- and low-density lipoproteins (HDL and LDL) particles measured by standardized clinical assays. ANOVA-simultaneous component analysis (ASCA) of the ring test spectral ensemble that contains methylene and methyl peaks (1.4–0.6 ppm) showed that 97.99% of the variance in the data is related to subject, 1.62% to sample type (serum or plasma), and 0.39% to laboratory. This interlaboratory variation is in fact smaller than the maximum acceptable intralaboratory variation on quality control samples. It is also shown that the reproducibility between laboratories is good enough for the LPD predictions to be exchangeable when the standardized NMR measurement protocol is followed. With the successful implementation of this protocol, which results in reproducible prediction of lipoprotein distributions across laboratories, a step is taken toward bringing NMR more into scope of prognostic and diagnostic biomarkers, reducing the need for less efficient methods such as ultracentrifugation or high-performance liquid chromatography (HPLC).

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b01329

DOI: 10.1021/acs.analchem.7b01329

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.